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EXECUTIVE SUMMARY 

Patient-derived xenograft (PDX) models are indispensable for translational cancer research. However, 
public and private PDX tumor banks may lack standard quality controls, which may lead to genomic and 
transcriptomic characterization inaccuracies, and the potential to reduce efficiencies with which oncology 
researchers and clinicians can mimic tumor pharmacology, growth, metastasis, resistance and relapse. 
To demonstrate the quality of the Certis tumor bank and to ensure the data in the BarneyOI Cancer 
Model Database™ accurately represents the growing collection of its PDX models, Certis analyzed 
mutation and transcriptomic profiles and compared gene expression results to both disease-free tissue 
and cancer patient profiles.  

 

KEY TAKEAWAYS 

• Gene expression from the Certis PDX tumor models is highly concordant with primary cancer 
samples in the Cancer Genome Atlas (TCGA), validating them as high-quality, valuable tools 
for preclinical research. 

• Certis’ PDX models exhibit dysregulation in typical cancer pathways compared to disease-
free tissue (i.e., normal controls). 

• Common cancer driver mutations in TP53, EGFR, PTEN, and KRAS are found at a high 
frequency across tumor types in Certis’ PDX models. 

• Mutational data for Certis’ PDX models are highly concordant across whole-exome 
sequencing (WES) and RNA-seq data. 

• The quality and concordance of Certis’ PDX models with TCGA ensure consistency and 
certainty, providing drug developers with clinically relevant models for cancer research. 

• The BarneyOI Cancer Model Database enables registered users to filter by mutation, copy 
number, fusions, microsatellite instability (MSI) and gene expression, to facilitate the 
identification of clinically relevant cancer models.    

INTRODUCTION 

Patient-derived xenografts (PDX) have become an essential model for preclinical and clinical cancer 
research.1 While there are several different PDX methodologies, generally, PDX models use tumor tissue 
from cancer patients that are subsequently implanted into an immunodeficient mouse and used for 
testing. Across various cancer types, they offer a more accurate clinical representative than other 
common models, such as cancer cell lines and genetically engineered mouse models (GEMMs). PDX 
models can mimic pharmacology, growth, metastasis, resistance, and relapse, characteristics typically 
seen in the clinic.2-4 As a result, they are used widely in preclinical research to measure tumor response 
to drug candidates or combinations.5-7 In clinical trials, they can facilitate co-clinical trials, where PDX 
models are generated from participants and used to predict clinical outcomes through treatment with the 
same regimens as patients. Clinicians can also use them to guide real-world patient treatments, allowing 
clinicians to test multiple therapeutic agents and select the one most likely to be efficacious for patients.8 

Given their utility across the cancer research continuum, there has been an explosion in the availability of 
PDX models from public and private biorepositories.9,10 Yet, depending on the PDX model selected and 
the tumor bank of origin, there can be gaps in metadata and inconsistent degrees of molecular 
characterization. Even with detailed genomic or transcriptomic data, proper quality control pipelines are 
required to ensure models are appropriately matched with initial annotations and free from sequencing 
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errors and artifacts. Standardized quality control practices should be firmly applied to ensure that model 
characteristics and performance are validated and maintained.9  In addition, many tumor banks 
benchmark their expression data from each model against other tumor models, making it difficult to get an 
accurate measure of expression compared to normal tissue.9,10 Together, this creates a significant gap in 
the precise characterization of PDX models and makes validation of mutation or expression data in the 
pathology of cancer challenging.  

To more fully characterize the PDX models within the Certis tumor bank, we performed WES and 
transcriptomic profiling of each model. We used publicly available databases, including Genotype-Tissue 
Expression (GTEx)11 and TCGA12,13, to properly benchmark our tumor expression data against normal 
controls and compare tumors against other similar, cancer patients, respectively. Furthermore, we 
compare mutations identified by WES to those in TCGA and find high concordance between these 
models. Lastly, we demonstrate a high concordance between our WES and RNA-seq data. Taken 
together, we present a rigorous molecular characterization of our models by using publicly available 
datasets. This information will enable researchers to access trusted PDX models that deliver consistent 
and reproducible results that drive preclinical drug development. 

MATERIALS AND METHODS 

MUTATION ANALYSIS 

WES paired-end reads were pre-processed to remove mouse contamination (Xenome v1.0) and poor-
quality reads (fastp).14 Spliced Transcripts Alignment to a Reference (STAR)15 was used to map reads to 
the Human GRCh38 (hg38) genome followed by variant calling using GATK Mutect216 and filtered against 
Panel of Norm (PON) from the 1000 Genomes project. Additionally, a list of over 1.2 million human 
genome-aligned mouse alleles (HAMA) was used to filter any variants from mouse contamination. Lastly, 
SnpEff was used to annotate and predict the effects of genetic variants.17 The GATK somatic copy 
number variant (CNVs) tool was used to produce segmented CNV data from WES, which was then 
subsequently mapped to genes to generate gene-level estimates.16 

GENE EXPRESSION ANALYSIS 

Gene expression was measured experimentally by bulk poly(A)-selected RNA-seq. Mouse contamination 
was removed (Xenome v1.0) and further processed for quality using fastp and FastQC.18,19 STAR was 
used to map stranded paired-end reads to the Human GRCh38 (hg38) genome, and gene expression 
was quantified using RSEM.20 Differential gene expression analysis was performed using edgeR between 
each model and healthy tissue from the GTEx project.21 Differential gene expression from tissue-specific 
cancers was collected from GEPIA, an online resource comparing TCGA to normal controls from GTEx, 
and used to compare against Certis PDX differential expression against similarly normal controls from 
GTEx.22 The Gene Set Enrichment Analysis (GSEA)23 algorithm was used to find enriched pathways 
(KEGG).24  
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RESULTS AND DISCUSSION 

TRANSCRIPTOMIC ANALYSIS REVEALS HIGH CONCORDANCE BETWEEN CERTIS PDX MODELS 
AND TCGA 

We used NGS to characterize the transcriptome of over 150 PDX models in the BarneyOI Cancer Model 
database, including clinically meaningful cancer types such as sarcoma (SARC), breast invasive 
carcinoma (BRCA), colon adenocarcinoma (COAD), glioblastoma multiforme (GBM), lung 
adenocarcinoma (LUAD), pancreatic adenocarcinoma (PAAD), and skin cutaneous melanoma (SKCM). 
To better understand how gene expression in Certis’ PDX tumor models compares to normal controls and 
analogous tumor types from patients in TCGA, Certis performed pairwise correlation analysis for 
differentially expressed genes in each cancer type.  

Compared to normal controls from GTEx, the Certis PDX models showed an intermediate positive 
correlation, with Person’s correlation average of r=0.62 across all cancer types and genes of interest 
(Figure 1A). Certis found an even higher correlation between gene expression patterns in Certis’ PDX 
models and those found in primary samples from the TCGA (Figure 1B; Pearson’s correlation average 
r=0.82). To further validate concordance between the PDX models and those in TCGA, Certis used 
GEPIA to identify the total number of significant differentially expressed genes (false discovery rate (FDR) 
< 0.05) for specific cancer types in TCGA vs. GTEx (Figure 1C).22 In a similar analysis with the PDX 
models vs. GTEx, Certis identified a similar number of differentially expressed genes across all cancer 
types, demonstrating agreement between transcriptional profiles in the PDX models and primary tumor 
data in TCGA (Figure 1C). 

FIGURE 1.A. CERTIS PDX VS. GTEX: GENE EXPRESSION OF NORMAL TISSUE FROM THE GENOTYPE-TISSUE 

EXPRESSION (GTEX) DATABASE SHOWS POSITIVE CORRELATION WITH SIMILAR TISSUE FROM CERTIS PDX 

MODELS (PEARSON’S CORRELATION AVERAGE, R=0.62).  
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FIGURE 1.B. CERTIS PDX VS. TCGA: COMPARISON OF CERTIS PDX GENE EXPRESSION DATA AGAINST 

THE CANCER GENOME ATLAS (TCGA). CERTIS PDX GENE EXPRESSION SHOWS HIGH POSITIVE 

CORRELATION TO SIMILAR CANCER TYPES FROM TCGA (PEARSON’S CORRELATION AVERAGE, R=0.82). 
 

 
 

FIGURE 1.C. SIGNIFICANT DIFFERENTIALLY EXPRESSED GENES: SIGNIFICANT (FDR < 0.05) 
DIFFERENTIAL EXPRESSION WAS CALCULATED BY COMPARING GTEX NORMAL TISSUE TO CERTIS PDX OR 

GTEX VS. TCGA (FROM GEPIA).  
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DIFFERENTIALLY EXPRESSED GENE EXPRESSION ANALYSIS REVEALS DYSREGULATION OF 
COMMON CANCER PATHWAYS 

To further characterize gene expression in our tumor models, we performed GSEA using transcriptomics 
data from the Certis PDX models compared to normal control data from GTEx. GSEA analysis 
demonstrates strong dysregulation of cell cycle pathways and pathways for specific tumor types, a 
hallmark of cancer pathology (Figure 2). In addition, unsupervised hierarchical clustering based on GSEA 
resulted in models from the same tumor type clustering together, demonstrating the high quality of our 
models and the absence of batch effects in our RNA-seq data (Figure 2). We did not observe robust 
clustering for many of our sarcoma models, likely due to the molecular heterogeneity observed in this 
tumor type.25 

FIGURE 2. GENE SET ENRICHMENT ANALYSIS (GSEA) REVEALS DYSREGULATED CANCER PATHWAYS AND 

CONCORDANCE BETWEEN SIMILAR DISEASE MODELS. GSEA ANALYSIS USING NORMAL CONTROLS FROM 

GTEX AGAINST CERTIS PDX MODELS UNCOVER PATHWAYS INDICATIVE OF CANCER PATHOLOGY. 
ADDITIONALLY, UNSUPERVISED HIERARCHICAL CLUSTERING SHOWS HIGH CONCORDANCE AND CLUSTERING 

BETWEEN SIMILAR MODELS AT THE PATHWAY LEVEL.  

 

  
 

MUTATIONAL PROFILING REVEALS COMMON CANCER DRIVER MUTATIONS 

The TCGA has performed molecular characterization of over 20,000 primary cancer and normal control 
samples, across 33 cancer types. Given this substantial dataset, Certis characterized the mutational 
profile of the tumors and compared them to those found in the TCGA. Certis performed WES on the PDX 
models and analyzed the frequency of common driver mutations in TP53, EGFR, PTEN, and KRAS, 
commonly mutated in various types of cancer.26 The most frequently mutated gene in the PDX models 
was TP53, and for genes like KRAS and TP53, the PDX models shared higher frequencies than TCGA 
(Figure 3). Furthermore, there are high frequencies of driver mutations in the Certis PDX tumor bank 
when high frequencies are seen in TCGA data, as would be expected in a comprehensive dataset such 
as the TCGA. 
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FIGURE 3. COMMON CANCER DRIVER MUTATIONS. MUTATION FREQUENCY OF COMMON CANCER GENES 

BETWEEN TCGA AND CERTIS PDX MODELS FROM WHOLE EXOME SEQUENCING (WES) REVEAL P53 AS THE 

MOST COMMON MUTATED GENE PAN-CANCER AND KRAS AS THE MOST COMMON MUTATED GENE IN 

PANCREATIC CANCER (PAAD). 

In addition, Certis characterized the copy number variations (CNVs) in different tumor types, including 
amplifications and deletions (Table 1). Strong associations between CNVs and a wide range of human 
cancers have been extensively described. Certis found significant evidence of gene amplifications and 
deletions in the Certis PDX tumor bank.27 Across all cancer types studied, gene amplification was more 
common than gene deletion, and SARC and LUAD showed the highest amplification (> 1000 genes). 

  
TABLE 1. CERTIS PDX COPY NUMBER VARIATION (CNV) ANALYSIS. CNV ANALYSIS ON CERTIS PDX MODELS 

FROM WES REVEALS A GREATER NUMBER OF GENE AMPLIFICATIONS ACROSS MULTIPLE CANCER MODELS 

COMPARED TO GENE DELETIONS. 
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STRONG CONCORDANCE BETWEEN WES AND RNA-SEQ TUMOR MUTATION DATA 

To supplement our mutational analysis, Certis performed a correlation analysis between WES and RNA-
seq mutation data for each Certis PDX model. Certis found high concordance between datasets for tumor 
models, adding certainty to the molecular characterization and further validating the RNA-seq, WES, and 
bioinformatics methodology (Figure 4). 

FIGURE 4. MUTATION CORRELATION ANALYSIS BETWEEN WES AND RNA-SEQ IN CERTIS PDX MODELS. 
OVERLAP ANALYSIS BETWEEN OUR RNA-SEQ AND WES REVEAL HIGH CONCORDANCE OF MUTATIONS 

BETWEEN THE NGS DATASETS. THE SAME PDX MODEL CAN BE SEEN ON THE DIAGONAL WITH HIGH 

CORRELATION (RED). 
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SUMMARY 

ACCESS HIGHLY CHARACTERIZED, RICHLY ANNOTATED PDX TUMOR MODELS 

Characterization of Certis PDX models using NGS reveals high concordance with datasets from TCGA, 
including thousands of genomics and transcriptomics datasets from primary cancer samples. Compared 
to normal controls from GTEx, Certis PDX models exhibit dysregulation of crucial pathways indicative of 
cancer pathology. The quality and concordance of the PDX models with known patient datasets ensure 
consistency and certainty, providing the research community and pharmaceutical scientists with clinically 
relevant models for cancer research.  

FIGURE 5. THE BARNEYOI CANCER MODEL DATABASE IS A WEB-BASED APPLICATION THAT ALLOWS USERS TO 

SEARCH A GROWING COLLECTION OF HIGHLY CHARACTERIZED, RICHLY ANNOTATED, AND LOW-PASSAGE 

PATIENT-CONSENTED XENOGRAFT MODELS AND MATCHED CANCER CELL LINES.  
 
WITH ENHANCED FILTERING FEATURES, USERS CAN: A. FINE-TUNE CUSTOM KEYWORD SEARCHES AND DRILL 

DOWN DEEP INTO GENOMIC PROFILES USING ADDITIVE GENE FILTERS, B. COMPARE GENE EXPRESSION 

RESULTS TO DISEASE-FREE TISSUE, C. OBTAIN A DETAILED MODEL PROFILE OF PATIENT AND TUMOR 

CHARACTERISTICS, D. VIEW INTERACTIVE GRAPHICAL REPRESENTATIONS OF MODEL SETS AND EXPORT AND 

SHARE YOUR SELECTED ANALYSIS.   
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CLOSING THE TRANSLATION GAP STARTS WITH USING THE MOST CLINICALLY 
RELEVANT CANCER MODEL 

With Certis tumor models having a strong average positive correlation (r=0.82) to the thousands of 
primary cancer samples in the Cancer Genome Atlas (TCGA), cancer researchers can be assured that 
each Certis model and its genomic characterization data is accurate, ultimately helping to save time, 
money, and lives. 

Learn more about the searchable cancer model database and the 
detailed NGS data on all Certis models in the tumor bank.  

 

Log in to the Barney OI Cancer Model Database™ now 
using your existing username and password 

or request access. 
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https://www.certisoncology.com/for-drug-developers/tumor-bank/
https://oncointel.certisoncology.com/login
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